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I. INTRODUCTION

An essential assumption of Kolmogorov 1941 theory is that eddies of any generation are space

filling at inertial-range scales. It assumes that energy transfer to small scale fluctuations is uniform,

i.e. 𝜖 is independent of space and time. However, the energy dissipation rate per unit mass of a

turbulent fluid, 𝜖, is a random function of 𝑥 and 𝑡, which fluctuates with the random velocity field

𝑣(𝑥, 𝑡). These small scale fluctuations are observed to be highly nonuniform in space and time,

which is denoted as intermittent. The word intermittency suggests the small scale turbulence tend

to concentrate into small and isolated regions or time intervals surrounded by smoother large scale

flows. As the scale decreases, or the Reynolds number increases, the intermittency effects should

become more and more important. In this sense the K41 theory is incomplete.

Geometrically speaking, the intermittency indicates that the dimension of the dissipative struc-

tures is smaller than the space dimension, i.e. 𝐷eff < 𝐷space, which reminds us of the fractals. In

fact, fractals have been used in intermittency models. In following sections, we will briefly review

the properties of fractals first, and then introduce the fractal model of intermittency.

II. FRACTALS

A fractal is an object or a mathematical set that exhibits a self-similar pattern. It is characterized

by a fractal dimension, which is a measure of the space-filling capacity of a pattern and tells how

a fractal scales differently from the space it is embedded in. A fractal dimension does not have to

be an integer.

In practice, the fractal dimension can be approximated by the box-counting dimension [1]. Imag-

ine the fractal lying on an evenly spaced grid, and count how many boxes are required to cover the

set. Then the box-counting dimension is calculated by seeing how this number changes as we make

the grid finer, i.e.

𝐷0 = lim
𝜖→0

ln𝑁 (𝜖)
ln (1∕𝜖)

,

where 𝜖 is the length of each grid and 𝑁 (𝜖) is the number of boxes of side length 𝜖. Roughly
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speaking, this suggests the number of boxes needed to cover the set increases with 𝜖 in a power law

fashion 𝑁 ∼ 𝜖−𝐷0 . Let us see some examples.

Example 1. Dimension of finite number points. Box number 𝑁 is finite and independent of 𝜖,

then

𝐷0 = lim
𝜖→0

ln𝑁
ln (1∕𝜖)

= 0.

Example 2. Dimension of a smooth curve segment of length 𝑙. The box number is 𝑁 = 𝑙∕𝜖,

then

𝐷0 = lim
𝜖→0

ln 𝑙∕𝜖
ln (1∕𝜖)

= lim
𝜖→0

(
1 − ln 𝑙

ln 𝜖

)
= 1.

Example 3. Dimension of an area 𝐴. The box number is 𝑁 = 𝐴∕𝜖2, then

𝐷0 = lim
𝜖→0

ln 𝐴∕𝜖2
ln (1∕𝜖)

= lim
𝜖→0

(
2 − ln𝐴

ln 𝜖

)
= 2.

These three examples are trivial cases of smooth space with integer dimension. The illustrations

of box-counting 𝑁 (𝜖) are shown in figure 1. Now let us check some nontrivial cases.

Figure 1. Illustrations of box-counting𝑁 (𝜖) for sets consisting (a) finite points, (b) a smooth curve segment,

and (c) the area enclosed by a curve.
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Example 4. Dimension of the Cantor ternary set, which is built by removing deleting the open

middle third from each of a set of line segments repeatedly, as shown in figure 2.

1. One starts by deleting the open middle third
(

1
3
, 2
3

)
from the interval [0, 1], leaving two line

segments:
[
0, 1

3

]
∪
[
2
3
, 1
]
.

2. Next, the open middle third of each of these remaining segments is deleted, leaving four line

segments:
[
0, 1

9

]
∪
[
2
9
, 1
3

]
∪
[
2
3
, 7
9

]
∪
[
8
9
, 1
]
.

3. This process is continued ad infinitum.

The Cantor ternary set is self-similar in the sense that smaller pieces of it reproduce the entire set

upon magnification.

In this case it is better to use iteration number 𝑛 instead of the box length 𝜖 for box-counting.

We assume the length of the set is 1 without loss of generality, then at 𝑛 iteration the length of box

is (1∕3)𝑛, box number 𝑁 = (3 − 1)𝑛 = 2𝑛, the dimension

𝐷0 = lim
𝑛→∞

ln 2𝑛

ln
(

1
(1∕3)𝑛

) = ln 2
ln 3

≈ 0.631,

which is a non-integer between zero and one, indicating the set is a fractal embedded in the one-

dimension space.

Figure 2. A Cantor ternary set in seven iterations.

Example 5. Dimension of Koch curve, also known as the “coastline curve”, as illustrated in

figure 3. It can be constructed by starting with an line segment of length 1, then recursively altering

as follows:

1. divide the line segment into three segments of equal length.

2. draw an equilateral triangle that has the middle segment from step 1 as its base and points

outward.
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3. remove the line segment that is the base of the triangle from step 2.

After each iteration, the number of sides of the Koch curve increases by a factor of 4, so the number

of sides after 𝑛 iterations is 𝑁𝑛 = 𝑁𝑛−1 ⋅4 = 4𝑛, and the length of each side is (1∕3)𝑛. The dimension

is then

𝐷0 = lim
𝑛→∞

ln 4𝑛

ln
(

1
(1∕3)𝑛

) = 2ln 2
ln 3

≈ 1.263,

which is between one and two. So Koch curve is a fractal embedded in two-dimension space, and

it is thickened from an one-dimension line segment. As the resolution increases, 𝑁 (𝜖) ∼ 𝜖−𝐷0 . It

is akin to many natural fractals like coastlines, snowflakes and mountain ranges.

Figure 3. Koch curve.

As mentioned above, a fractal is self-similar, i.e. repeats the same or approximately similar

pattern at every scale. The fractal dimension also deviates from the dimension of the embedding

space. These two properties make fractals natural candidates to describe:
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• intermittent dissipation events,

• geometry of dissipative structures in intermittent turbulence,

since in cascades the dissipative structures do not filling the space uniformly. The inclusion of

fractals can give an intermittency correction to the K41 spectrum.

III. THE 𝛽-MODEL

Experimental evidence has shown that the small-scale structures of turbulence become less and

less space filling as the scale size decreases. This patchiness of the small scales can be understood

by a simple vortex-stretching argument. From the vorticity equation

𝜕
𝜕𝑡
𝜔 = ∇ × (𝐯 × 𝜔) + 𝜈∇2𝜔

𝑑
𝑑𝑡

𝜔 = 𝜔 ⋅ ∇𝐯 + 𝜈∇2𝜔

|𝜔| ∼ |∇𝐯|
we obtain

𝑑
𝑑𝑡

|𝜔| ∼ |||𝜔2||| .
Hence it must expected that the vorticity/enstrophy will grow explosively through vortex-stretching

process, in which the turbulent activities become more and more concentrated. Therefore, there

should be intermittency corrections to K41 theory of the inertial-range.

The 𝛽-model is the simplest fractal intermittency model which incorporates an intermittency

modification to the K41 model [2, 3]. The basic idea (shown in figure 4) is that at each step of

cascades, the number of “children” of a given “parent” eddy is chosen such that the fraction of

volume occupied is decreased by a factor 𝛽 (0 < 𝛽 < 1). The factor 𝛽 is an adjustable parameter

of the model. Otherwise, nothing is changed from the K41 theory.

Let us now define 𝛽-model. At each step of the cascade process, any 𝑛-eddy of size 𝑙𝑛 = 𝑙𝑛−1∕2 =

𝑙02−𝑛 produces 𝑁 (𝑛 + 1)-eddies on average. It needs 23 “children” eddies to fill the full space at

each step. If the largest eddies are space filling, after 𝑛 iterations only a fraction

𝛽𝑛 = 𝛽𝑛 =
(𝑁
23

)𝑛
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Figure 4. (a) Kolmogorov 41 cascade, at each step the eddies are full space-filling. (b) 𝛽-model cascade, at

each step the eddies become less and less space-filling.

of the space will be occupied by active fluid. Now we denote 𝑁 ≡ 2𝐷, where the 𝐷 is the fractal

dimension, then it is straightforward to work out how 𝛽-model modifies K41:

𝛽 =
(
2𝐷−3)𝑛 = (

𝑙0
𝑙𝑛

)𝐷−3

,

𝐸𝑛 ∼ 𝛽𝑛𝑣
2
𝑛,

𝑡𝑛 =
𝑙𝑛
𝑣𝑛
,

𝜖𝑛 ∼
𝐸𝑛

𝑡𝑛
∼ 𝜖.
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Combining these equations, we obtain

𝑣𝑛 ∼ 𝜖
1
3 𝑙

1
3
𝑛

(
𝑙𝑛
𝑙0

)− 1
3 (3−𝐷)

,

𝑡𝑛 ∼ 𝜖−
1
3 𝑙

2
3
𝑛

(
𝑙𝑛
𝑙0

) 1
3 (3−𝐷)

,

𝐸𝑛 ∼ 𝜖
2
3 𝑙

2
3
𝑛

(
𝑙𝑛
𝑙0

) 1
3 (3−𝐷)

,

𝐸 (𝑘) ∼ 𝜖
2
3𝑘− 5

3
(
𝑘𝑙0

)− 1
3 (3−𝐷) .

Now we can see the intermittency correction have been expressed in terms of a fractal dimension

𝐷. The spectra are slightly steepened. By fitting the spectral data, we are able to deduce the

effective/fractal dimension, which is 𝐷 = 2.7 − 2.8.

Remark: The mean dissipation rate is still classical Kolmogorov result

𝜖 ∼
𝑣30
𝑙0
,

which is not affected by the intermittency parameter 𝐷. In contrast, the dissipation scale 𝑙𝑑 is af-

fected. By equating the eddy turnover time 𝑡𝑛 to viscous diffusion time 𝑙2𝑛∕𝜈, we obtain the dissipation

scale

𝑙𝑑 ∼ 𝑙0𝑅
− 3

1+𝐷
𝑒 ,

where 𝑅𝑒 = 𝑙0𝑣0∕𝜈 ∼ 𝜖
1
3 𝑙

4
3
0 𝜈

−1 is the Reynolds number. If 𝐷 = 3, then 𝑙𝑑 ∼ 𝜈3∕4∕𝜖1∕4, which recovers

the K41 results.

IV. HIGHER-ORDER STATISTICS

We now turn to higher-order structure functions. The non-dimensionalized moments of higher

orders are defined as

𝑆𝑝 =
⟨(𝛿𝑣)𝑝⟩⟨
(𝛿𝑣)2

⟩𝑝∕2
.

In K41 theory 𝛿𝑣 (𝑙) ∼ 𝜖1∕3𝑙1∕3, then ⟨(𝛿𝑣)𝑝⟩ ∼ 𝜖𝑝∕3𝑙𝑝∕3, so the normalized higher order moments

𝑆𝑝 ∼ 1. The K41 energy spectral scalings are supported by the experimental results, although

small corrections can be added the exponent, larger departures due to intermittency can be seen

in higher-order statistics. Hence the higher-order moments are more severe probes of small scale

structures of turbulence than energy is.
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Two important higher order moments are skewness 𝑆 (𝑝 = 3) and kurtosis 𝐾 (𝑝 = 4). Skewness

is a measure of asymmetry of the probability distribution function (PDF), and is relevant to the

turbulent energy transfer, since

𝜕𝑡
⟨
𝑣2
⟩
∼
⟨
𝑣3
⟩
∼ 𝑆.

𝑆 (∇𝑣) is also a measure of vortex stretching:⟨
(∇𝑣)3

⟩
∼ ∫ 𝑘2𝑇 (𝑘)𝑑𝑘⟨

(∇𝑣)2
⟩
∼ ∫ 𝑘2𝐸(𝑘)𝑑𝑘

𝑆 ∼
∫ 𝑘2𝑇 (𝑘)𝑑𝑘(∫ 𝑘2𝐸(𝑘)𝑑𝑘

)3∕2 ,
where the ∫ 𝑘2𝑇 (𝑘)𝑑𝑘 is the time-rate-change of the enstrophy due to nonlinear interactions. Kur-

tosis represents the flatness of the distribution, a PDF with heavier tails will have larger kurtosis.

A Gaussian distribution have 𝐾 = 3. Deviations from 𝐾 = 3 typically indicate long-range corre-

lations and non-Gaussian behavior.

In 𝛽-model, eddies fill only a fraction 𝛽𝑛 of the space, we have⟨(
𝛿𝑣𝑛

)𝑝⟩ ∼ 𝛽𝑛
⟨(

𝛿𝑣𝑛
)𝑝⟩

𝑐𝑜𝑛𝑑

∼ 𝛽𝑛𝑣
𝑝
𝑛

∼ 𝜖
𝑝
3 𝑙

𝑝
3
𝑛

(
𝑙𝑛
𝑙0

)𝜁𝑝
,

where 𝜁𝑝 =
1
3
(3 −𝐷) (3 − 𝑝) . The dimensionless structure functions are given by

𝑆𝑝
(
𝑙𝑛
)
∼
(
𝑙𝑛
𝑙0

)𝜉𝑝
,

where

𝜉𝑝 = 𝜁𝑝 −
1
2
𝑝𝜁2 =

1
2
(3 −𝐷) (2 − 𝑝) .

We can see that 𝜉𝑝 < 0, when 𝑝 > 2. This means the structures grow stronger on small scales. In

particular, we obtain the the skewness

𝑆 ∼ 𝑅3(3−𝐷)∕2(1+𝐷)
𝑒 ,

and kurtosis

𝐾 ∼ 𝑆2.

Note:
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• the departures from K41 are strongest at smallest scales.

• 𝛽-model shows stages in cascade have “memory” of initial scale 𝑙0, since it appears explicitly

in the formulas. Hence the 𝛽-model is sensitive to initial conditions, which conforms to

experimental observations. This property is lacking in K41 model.

• the effective dimension is𝐷 ≈ 2.8 from the data fitting. This means the dissipative structures

are homogeneous fractals, i.e. highly convoluted sheets, distributed in 3-dimension space,

which do not uniformly fill the embedding space.

• but 𝜁𝑝 departs 𝛽-model at high 𝑝, as shown in figure 5. Multi-fractal model are then intro-

duced to resolve this [3, 4]. The idea of multi-fractal model is that the velocity field has no

single exponent ℎ (single dissipative structure) such that 𝛿𝑣𝑙 ∼ 𝑙ℎ, but a continuous spectrum

of exponents (multiple dissipative structures). In other words, in the inertial range one has

𝛿𝑣𝑙 (𝐱) ∼ 𝑙ℎ,

where 𝐱 ∈ 𝑆ℎ, and 𝑆ℎ is a fractal set with dimension 𝐷 (ℎ) and ℎ𝑚𝑖𝑛 < ℎ < ℎ𝑚𝑎𝑥. This is

known as the local scale-invariance, in contrast to the global scale-invariance in K41 and

𝛽-model.

The fluctuating “dissipation” at point 𝐫 is defined as

𝜖 (𝐫) ∼ 𝜈 (∇𝑣)2 .

Clearly 𝜖 (r) depends on the dissipation range, in that sense its primary contribution comes from

the smallest scale ∼ 𝑙𝑑 . Then in 𝛽-model we have⟨
𝜖2
⟩
∼ 𝜈2

⟨
(∇𝑣)2 (∇𝑣)2

⟩
∼ 𝜈2𝛽

(
𝑙𝑑
) �̃�4 (𝑙𝑑)

𝑙4𝑑
,⟨

𝜖2
⟩

⟨𝜖2⟩ ∼ 𝑅
3 3−𝐷
1+𝐷

𝑒

∼ 𝐾.

The dissipation correlation function is defined as

⟨𝜖 (𝐫) 𝜖 (𝐫 + 𝐥)⟩ ∼ ⟨
𝜖2
⟩
Prob {𝐫 and 𝐫 + 𝐥 belong to same eddy} .
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Figure 5. Structure function scaling exponents, 𝜁𝑝, vs 𝑝. Markers are experimental data and lines are model

fittings.

If two points are correlated by an eddy 𝑙𝑛, then they are correlated by all larger eddies in same

region. The energy transfer per unit mass from 𝑚-eddies to (𝑚 + 1)-eddies is

⟨
𝜖
(
𝑙𝑚
)⟩

∼
𝑣3

(
𝑙𝑚
)

𝑙𝑚
.

We thus obtain the correlation function by sum up all the scales, and the largest value comes from

𝑚 = 𝑛, so that the final result is

⟨𝜖 (𝐫) 𝜖 (𝐫 + 𝐥)⟩ ∼ 𝑛∑
𝑚=0

𝛽𝑚

(
𝑣3𝑚
𝑙𝑚

)2

∼ 𝜖2
(

𝑙
𝑙0

)−(3−𝐷)

.

This expression, which is singular at 𝑙 → 0, indicates a very strong correlation in dissipation at

small scales.

V. TIME SERIES AND HURST EXPONENT

So far we have introduced the fractals and the 𝛽-model, which are mostly focused on intermit-

tency in space. However, the time series also exhibits the fractal nature, technically, self-affine
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property. For example, given a Brownian time series 𝐵 (𝑡), then the expectation of first and second

order are:

E {𝐵 (𝑡 + 𝑇 ) − 𝐵 (𝑡)} = 0,

E
{
(𝐵 (𝑡 + 𝑇 ) − 𝐵 (𝑡))2

}
= 𝑇 ,

where the increment 𝑇 > 𝜏𝑎𝑐 , since the events in this random motion are uncorrelated. Then we

can generalize it by introduce an exponent without the restriction to Brownian motions:

E
{
𝐵𝐻 (𝑡 + 𝑇 ) − 𝐵𝐻 (𝑡)

}
= 0,

E
{(

𝐵𝐻 (𝑡 + 𝑇 ) − 𝐵𝐻 (𝑡)
)2} = 𝑇 2𝐻 ,

where𝐻 is named the Hurst exponent which is a measure of the roughness of a time series. Clearly,

when𝐻 ≠ 0.5, 𝐵 (𝑡)will deviate from the Gaussian behavior, which means the correlation between

events becomes non-negligible. Actually, the Hurst exponent is the counterpart of fractal dimen-

sion for intermittency in time series.

Studies involving the Hurst exponent were originally developed by British hydrologist H. E.

Hurst for the practical matter of determining optimum dam sizing for the Nile river. He discovered

that the rescaled range 𝑅∕𝑆, which represents rescaled ideal capacity of a reservoir, is proportional to

𝑘𝐻 for large 𝑘, where 𝑘 is the time span and 𝐻 > 0.5. This empirical finding was in contradiction

to results for the Brownian motion and random walk process. For any stationary process with

short-range dependence, 𝑅∕𝑆 should behave asymptotically ∼ 𝑘0.5.

Later, Mandelbrot related the Hurst exponent to fractal geometry and used it as a measure of

the long-term memory of a time series. In addition, Mandelbrot also brought in two terms called

“Joseph” effect and “Noah” effect:

• The “Joseph” effect says a time series has long periods with high levels, and then followed

by long periods with low levels. The series looks stationary overall. At short time periods, it

seem to have cycles and local trends. But at the whole scale, there is no apparent persisting

cycle or global trend. This effect infers 𝐻 > 0.5. The name refers to the Old Testament story

that Egypt would experience seven years of rich harvest followed by seven years of famine.

• The “Noah” effect says a time series tends to have large and concentrated events, indicating

an infinite variance. The name is derived from the biblical story of the Great Flood.
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Technically, the Hurst exponent, 𝐻 , is defined in terms of the asymptotic behavior of the rescaled

range as a function of the time span of a time series as follows:

lim
𝑛→∞

E
[
𝑅 (𝑛)
𝑆 (𝑛)

]
= 𝐶𝑛𝐻 ,

where 𝑅 (𝑛) is the range of the first 𝑛 values, 𝑆 (𝑛) is their standard deviation. As mentioned above,

the 𝐻 exponent encodes fractal character of dynamics, i.e.

𝐷0 ∼
ln𝑁
ln (1∕𝜖)

↔ 𝐻 ∼ lnΔ𝐵
ln Δ𝑡

,

suggesting a direct relation to the fractal dimension. Using the Hurst exponent we can classify time

series into types and gain some insight into their dynamics. Here are some types of time series and

the Hurst exponents associated with each of them.

A. Brownian Time Series (𝐻 = 0.5)

In a Brownian time series (also known as random walk), as shown in figure 6, observations are

uncorrelated in time – being higher or lower than the current observation are equally possible for

a later observation. A Hurst exponent close to 0.5 is indicative of a Brownian time series.

Figure 6. A Brownian time series (𝐻 = 0.53).



13

B. Anti-Persistent Time Series (0 < 𝐻 < 0.5)

In an anti-persistent time series (also known as a mean-reverting series) an increase will most

likely be followed by a decrease or vice-versa (i.e., values will tend to revert to a mean), as shown

in figure 7. This means that movements have a tendency to return to a long-term mean. A Hurst

exponent value between 0 and 0.5 is indicative of anti-persistent behavior and the closer the value

is to 0, the stronger is the tendency for the time series to revert to its long-term mean value.

Figure 7. An anti-persistent time series (𝐻 = 0.043).

C. Persistent Time Series (0.5 < 𝐻 < 1)

In a persistent time series an increase in values will most likely be followed by an increase in

the short term, and a decrease in values will most likely be followed by another decrease in the

short term. The figure 8 provides an example of a persistent time series. A Hurst exponent value

between 0.5 and 1.0 indicates persistent behavior; the larger the 𝐻 value, the stronger the trend.
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Figure 8. A persistent time series (𝐻 = 0.95).
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